Ventilator-associated pneumonia

Author: Audiopedia

Ventilator-associated pneumonia is a type of lung infection that occurs in people who are on breathing machines in hospitals. As such, VAP typically affects critically ill persons that are in an intensive care unit. VAP is a major source of increased illness, and death. Persons with VAP have increased lengths of ICU hospitalization and have up to a 20-30% death rate.

The diagnosis of VAP varies among hospitals and providers but usually requires a new infiltrate on chest x-ray plus two or more other factors. These factors include temperature of 38 °C or 12 × 109/ml, purulent secretions from the airways in the lung, and/or reduction in gas exchange. Signs and symptoms People who are on mechanical ventilation are often sedated and are rarely able to communicate.

As such, many of the typical symptoms of pneumonia will either be absent or unable to be obtained. The most important signs are fever or low body temperature, new purulent sputum, and hypoxemia. Cause = Risk factors = Risk factors for VAP include underlying heart or lung disease, neurologic disease, and trauma, as well as modifiable risk factors such as whether the head of the bed is flat or raised, whether the patient had an aspiration event before intubation, and prior antibiotic exposure. Patients who are in the ICU for head trauma or other severe neurologic illness, as well as patients who are in the ICU for blunt or penetrating trauma, are at especially high risk of developing VAP. Further, patients hospitalized for blunt trauma are at a higher risk of developing VAP compared to patients with penetrating trauma. = Microbiology = The microbiologic flora responsible for VAP is different from that of the more common community-acquired pneumonia.

In particular, viruses and fungi are uncommon causes in people who do not have underlying immune deficiencies. Though any microorganism that causes CAP can cause VAP, there are several bacteria which are particularly important causes of VAP because of their resistance to commonly used antibiotics. These bacteria are referred to as multidrug resistant. Pseudomonas aeruginosa is the most common MDR Gram-negative bacterium causing VAP. Pseudomonas has natural resistance to many antibiotics and has been known to acquire resistance to every antibiotic except for polymyxin B.

Ventilator-associated pneumonia

Resistance is typically acquired through upregulation or mutation of a variety of efflux pumps which pump antbiotics out of the cell. Resistance may also occur through loss of an outer membrane porin channel Klebsiella pneumoniae has natural resistance to some beta-lactam antibiotics such as ampicillin. Resistance to cephalosporins and aztreonam may arise through induction of a plasmid-based extended spectrum beta-lactamase or plasmid-based ampC-type enzyme Serratia marcescens has an ampC gene which can be induced by exposure to antibiotics such as cephalosporins. Thus, culture sensitivities may initially indicate appropriate treatment which fails due to bacterial response.

Enterobacter as a group also have an inducible ampC gene. Enterobacter may also develop resistance by acquiring plasmids. Citrobacter also has an inducible ampC gene. Stenotrophomonas maltophilia often colonizes people who have tracheal tubes but can also cause pneumonia. It is often resistant to a wide array of antibiotics but is usually sensitive to co-trimoxazole Acinetobacter are becoming more common and may be resistant to carbapenems such as imipenem and meropenem Burkholderia cepacia is an important organism in people with cystic fibrosis and is often resistant to multiple antibiotics Methicillin-resistant Staphylococcus aureus is an increasing cause of VAP. As many as fifty percent of Staphylococcus aureus isolates in the intensive care setting are resistant to methicillin. Resistance is conferred by the mecA gene.

Pathophysiology It is thought by many, that VAP primarily occurs because the endotracheal or tracheostomy tube allows free passage of bacteria into the lower segments of the lung in a person who often has underlying lung or immune problems. Bacteria travel in small droplets both through the endotracheal tube and around the cuff. Often, bacteria colonize the endotracheal or tracheostomy tube and are embolized into the lungs with each breath. Bacteria may also be brought down into the lungs with procedures such as deep suctioning or bronchoscopy. Another possibility is that the bacteria already exist in the mucus lining the bronchial tree, and are just kept in check by the body's first line of defenses. Ciliary action of the cells lining the trachea drive the mucus superiorly, leading to a build-up of fluids around the inflated cuff where there is little to no airway clearance. The bacteria can then colonize easily without disturbance and then rise in numbers enough to become infective. The droplets that are driven into the airstream and into the lung fields are lofted by way of Bernoulli's principle.

There is also a condition called oxidative damage that occurs when concentrations of pure oxygen come into prolonged contact with cells and this damages the cilia of the cells, thus inhibiting their action as part of the body's first line of defense. Whether bacteria also travel from the sinuses or the stomach into the lungs is, as of 2005, controversial. However, spread to the lungs from the blood stream or the gut is uncommon. Once inside the lungs, bacteria then take advantage of any deficiencies in the immune system and multiply. A combination of bacterial damage and consequences of the immune response lead to disruption of gas exchange with resulting symptoms. Diagnosis Diagnosis of ventilator-associated pneumonia is difficult and is not standardized. The criteria used for diagnosis of VAP varies by institution, but tends to be a combination of several of the following radiographic, clinical sign, and laboratory evidence: Temperature greater than 38C or less than 36C White blood cell count greater than 12,000/mm3 or less than 4,000/mm3 Purulent secretions, increased secretions, or change in secretions Positive tracheal cultures or bronchoalvelolar lavage cultures Some sign of respiratory distress, such as shortness of breath, rapid breathing, abnormal breathing sounds when listening with stethoscope Increased need for oxygen on the ventilator Chest X-Rays: at least two serial xrays showing sustained or worsening shadowing Positive cultures that were obtained directly from the lung environment, such as from the trachea or bronchioles As an example, some institutions may require one clinical symptoms such as shortness of breath, one clinical sign such as fever, plus evidence on chest xray and in tracheal cultures.

There is no gold standard for getting cultures or other evidence of bacterial, viral, or fungal culprit. One strategy collects cultures from the trachea of people with symptoms of VAP. Another is more invasive and advocates a bronchoscopy plus bronchoalveolar lavage for people with symptoms of VAP. Both strategies also require a new or enlarging infiltrate on chest x-ray as well as clinical signs/symptoms such as fever and shortness of breath. Blood cultures may reveal the microorganisms causing VAP, but are often not helpful as they are positive in only 25% of clinical VAP cases. Even in cases with positive blood cultures, the bacteremia may be from a source other than the lung infection.

Prevention Prevention of VAP involves limiting exposure to resistant bacteria, discontinuing mechanical ventilation as soon as possible, and a variety of strategies to limit infection while intubated. Resistant bacteria are spread in much the same ways as any communicable disease. Proper hand washing, sterile technique for invasive procedures, and isolation of individuals with known resistant organisms are all mandatory for effective infection control.

A variety of aggressive weaning protocols to limit the amount of time a person spends intubated have been proposed. One important aspect is limiting the amount of sedation that a ventilated person receives. Other recommendations for preventing VAP include raising the head of the bed to at least 30 degrees. Antiseptic mouthwashes such as chlorhexidine may also reduce the incidence of VAP, although the evidence is mainly restricted to those who have undergone cardiac surgery. American and Canadian guidelines strongly recommend the use of supraglottic secretion drainage Special tracheal tubes with an incorporated suction lumen as the EVAC tracheal tube form Covidien / Mallinckrodt can be used for that reason.

New cuff technology based on polyurethane material in combination with subglottic drainageshowed significant delay in early and late onset of VAP. A recent clinical trial indicates that the use of silver-coated endotracheal tubes may also reduce the incidence of VAP. There is tentative evidence that the use of probiotics may reduced the likelihood of getting VAP, however it is unclear if probiotics have an impact on ICU or in-hospital death. Treatment Treatment of VAP should be matched to known causative bacteria. However, when VAP is first suspected, the bacteria causing infection is typically not known and broad-spectrum antibiotics are given until the particular bacterium and its sensitivities are determined. Empiric antibiotics should take into account both the risk factors a particular individual has for resistant bacteria as well as the local prevalence of resistant microorganisms. If a person has previously had episodes of pneumonia, information may be available about prior causative bacteria. The choice of initial therapy is therefore entirely dependent on knowledge of local flora and will vary from hospital to hospital.

Risk factors for infection with an MDR strain include ventilation for more than five days, recent hospitalization, residence in a nursing home, treatment in a hemodialysis clinic, and prior antibiotic use. Possible empirical therapy combinations include: vancomycin/linezolid and ciprofloxacin, cefepime and gentamicintobramycin vancomycin/linezolid and ceftazidime Ureidopenicillin plus β-lactamase inhibitor such as piperacillin/tazobactam or ticarcillin/clavulanate a carbapenem Therapy is typically changed once the causative bacteria are known and continued until symptoms resolve. For patients with VAP not caused by nonfermenting Gram-negative bacilli the available evidence seems to support the use of short-course antimicrobial treatments (.

Ventilator-associated pneumonia

Ventilator-associated pneumonia is a type of lung infection that occurs in people who are on breathing machines in hospitals. As such, VAP typically affects critically ill persons that…

By: Audiopedia
Using pig lungs to learn about cystic fibrosis-related lung infections

British people don't buy lungs because they really don't know what to do with them. The majority of them now either end up in faggots, or ends up in a dog mince. The first thing…

By: Microbiology Society
Liver fluke live

Fasciola hepatica, also known as the common liver fluke or sheep liver fluke, is a parasitic trematode of the class Trematoda, phylum Platyhelminthes. It infects the livers of various…

By: Microhub Plus
Meet Rajive Tandon, MD, Pulmonary and Critical Care Specialist at Ohio…

Hello, I'm Rajive Tandon. I work at The Ohio State University Wexner Medical Center in the Division of Pulmonary Critical Care Medicine. I was interested in medicine originally…

By: Ohio State Wexner Medical Center
FUNGUS - Documentary

WikiVidi Documentaries Fungus A fungus is any member of the group of eukaryotic organisms that includes microorganisms such as yeasts and molds, as well as the more familiar mushrooms.…

By: WikiVidi Documentaries