Heart rate

Author: Audiopedia

Heart rate, or heart pulse, is the speed of the heartbeat measured by the number of heartbeats per unit of time -typically beats per minute. The heart rate can vary according to the body's physical needs, including the need to absorb oxygen and excrete carbon dioxide. Activities that can provoke change include physical exercise, sleep, anxiety, stress, illness, ingesting, and drugs. The normal resting adult human heart rate ranges from 60–100 bpm. Bradycardia is a slow heart rate, defined as below 60 bpm. Tachycardia is a fast heart rate, defined as above 100 bpm at rest.

When the heart is not beating in a regular pattern, this is referred to as an arrhythmia. These abnormalities of heart rate sometimes, but not always, indicate disease. Measuring the heart rate Manual measurement Heart rate is measured by finding the pulse of the heart. This pulse rate can be found at any point on the body where the artery's pulsation is transmitted to the surface by pressuring it with the index and middle fingers; often it is compressed against an underlying structure like bone.

The thumb should not be used for measuring another person's heart rate, as its strong pulse may interfere with the correct perception of the target pulse. The radial artery is the easiest to use to check the heart rate. However, in emergency situations the most reliable arteries to measure heart rate are carotid arteries. This is important mainly in patients with atrial fibrillation, in whom heart beats are irregular and stroke volume is largely different from one beat to another. In those beats following a shorter diastolic interval left ventricle doesn't fill properly, stroke volume is lower and pulse wave is not strong enough to be detected by palpation on a distal artery like the radial artery.

It can be detected, however, by doppler. Possible points for measuring the heart rate are: The ventral aspect of the wrist on the side of the thumb. The ulnar artery. The neck. The inside of the elbow, or under the biceps muscle. The groin. Behind the medial malleolus on the feet. Middle of dorsum of the foot.

Heart rate

Behind the knee. Over the abdomen. The chest, which can be felt with one's hand or fingers. It is also possible to auscultate the heart using a stethoscope.

The temple. The lateral edge of the mandible. The side of the head near the ear. Electronic measurement A more precise method of determining heart rate involves the use of an electrocardiograph, or ECG. An ECG generates a pattern based on electrical activity of the heart, which closely follows heart function.

Continuous ECG monitoring is routinely done in many clinical settings, especially in critical care medicine. On the ECG, instantaneous heart rate is calculated using the R wave-to-R wave interval and multiplying/dividing in order to derive heart rate in heartbeats/min. Multiple methods exist: HR = 1,500/(RR interval in millimeters) HR = 60/(RR interval in seconds) HR = 300/number of "large" squares between successive R waves. Note that these formulas calculate an instantaneous heart rate, or the number of times the heart would beat if successive RR intervals were constant. It may not necessarily reflect a person's heart rate over time. Heart rate monitors allow measurements to be taken continuously and can be used during exercise when manual measurement would be difficult or impossible.

Various commercial heart rate monitors are also available. Some monitors, used during sport, consist of a chest strap with electrodes. The signal is transmitted to a wrist receiver for display. Alternative methods of measurement include pulse oximetry and seismocardiography. Basal heart rate The basal or resting heart rate is measured while the subject is relaxed but awake, in a neutrally temperate environment, and not having recently exerted himself or herself nor having been subject to a stress or even a surprise. The typical resting heart rate in adults is 60–80 beats per minute. For endurance athletes at the elite level, it is not unusual to have a resting heart rate between 33 and 50.

This is the firing rate of the heart sinoatrial node, where the faster heart pacemaker cells driving the self-generated rhythmic firing and responsible for the cardiac muscle automaticity are located. Heart rate is not a stable value and it increases or decreases in response to the body's need in a way to maintain an equilibrium between requirement and delivery of oxygen and nutrients. The normal SAN firing rate is affected by autonomic nervous system activity: sympathetic stimulation increases and parasympathetic stimulation decreases the firing rate. Maximum heart rate The maximum heart rate is the highest heart rate an individual can achieve without severe problems through exercise stress, and generally decreases with age.

Since HRmax varies by individual, the most accurate way of measuring any single person's HRmax is via a cardiac stress test. In this test, a person is subjected to controlled physiologic stress while being monitored by an ECG. The intensity of exercise is periodically increased until certain changes in heart function are detected on the ECG monitor, at which point the subject is directed to stop. Typical duration of the test ranges ten to twenty minutes. Adults who are beginning a new exercise regimen are often advised to perform this test only in the presence of medical staff due to risks associated with high heart rates. For general purposes, a formula is often employed to estimate a person's maximum heart rate. However, these predictive formulas have been criticized as inaccurate because they generalized population-averages and usually focus on a person's age.

It is well-established that there is a "poor relationship between maximal heart rate and age" and large standard deviations around predicted heart rates.. HRmax Estimation Formulas Tanaka, Monahan, & Seals From Tanaka, Monahan, & Seals: HRmax = 208 −   Their meta-analysis and laboratory study concluded that, using this equation, HRmax was very strongly correlated to age. The regression equation that was obtained in the laboratory-based study, was virtually identical to that of the meta-study. The results showed HRmax to be independent of gender and independent of wide variations in habitual physical activity levels. This study found a standard deviation of ~10 beats per minute for individuals of any age, meaning the HRmax formula given has an accuracy of ±20 beats per minute. In 2007, researchers at the Oakland University analyzed maximum heart rates of 132 individuals recorded yearly over 25 years, and produced a linear equation very similar to the Tanaka formula, HRmax = 206.9 −, and a nonlinear equation, HRmax = 191.5 −.

The linear equation had a confidence interval of ±5–8 bpm and the nonlinear equation had a tighter range of ±2–5 bpm. Also a third nonlinear equation was produced: HRmax = 163 + −. Haskell and Fox Notwithstanding the research of Tanaka, Monahan, & Seals, the most widely cited formula for HRmax is still: HRmax = 220 − age Although attributed to various sources, it is widely thought to have been devised in 1970 by Dr.

William Haskell and Dr. Samuel Fox. Inquiry into the history of this formula reveals that it was not developed from original research, but resulted from observation based on data from approximately 11 references consisting of published research or unpublished scientific compilations. It gained widespread use through being used by Polar Electro in its heart rate monitors, which Dr. Haskell has "laughed about", as the formula "was never supposed to be an absolute guide to rule people's training." While it is the most common, this particular formula is not considered by reputable health and fitness professionals to be a good predictor of HRmax. Despite the widespread publication of this formula, research spanning two decades reveals its large inherent error, Sxy = 7–11 bpm.

Consequently, the estimation calculated by   HRmax = 220 − age   has neither the accuracy nor the scientific merit for use in exercise physiology and related fields. Robergs and Landwehr A 2002 study of 43 different formulas for HRmax published in the Journal of Exercise Psychology concluded that: no "acceptable" formula currently existed, the least objectionable formula was: HRmax = 205.8 − This had a standard deviation that, although large, was considered acceptable for prescribing exercise training HR ranges. Gulati Research conducted at Northwestern University by Martha Gulati, et al., in 2010 suggested a maximum heart rate formula for women: HRmax = 206 − Gellish A study from Lund, Sweden gives reference values for men: HRmax = 203.7 / ) )   and for women: HRmax = 190.2 / ) )   Other formulae HRmax = 206.3 − (Often attributed to "Londeree and Moeschberger from the University of Missouri") HRmax = 217 − (Often attributed to "Miller et al. From Indiana University") Limitations of Estimation Formulas Maximum heart rates vary significantly between individuals. Even within a single elite sports team, such as Olympic rowers in their 20s, maximum heart rates have been reported as varying from 160 to 220. Such a variation would equate to a 60 or 90 year age gap in the linear equations above, and would seem to indicate the extreme variation about these average figures. Figures are generally considered averages, and depend greatly on individual physiology and fitness. For example an endurance runner's rates will typically be lower due to the increased size of the heart required to support the exercise, while a sprinter's rates will be higher due to the improved response time and short duration.

While each may have predicted heart rates of 180, these two people could have actual HRmax 20 beats apart. Further, note that individuals of the same age, the same training, in the same sport, on the same team, can have actual HRmax 60 bpm apart: the range is extremely broad, and some say "The heart rate is probably the least important variable in comparing athletes." Heart rate reserve Heart rate reserve is the difference between a person's measured or predicted maximum heart rate and resting heart rate. Some methods of measurement of exercise intensity measure percentage of heart rate reserve. Additionally, as a person increases their cardiovascular fitness, their HRrest will drop, thus the heart rate reserve will increase. Percentage of HRreserve is equivalent to percentage of VO2 reserve. HRreserve = HRmax − HRrest This is often used to gauge exercise intensity. Karvonen's study findings have been questioned, due to the following: The study did not use VO2 data to develop the equation. Only six subjects were used, and the correlation between the percentages of HRreserve and VO2 max was not statistically significant.

Heart rate recovery Heart rate recovery is the reduction in heart rate at peak exercise and the rate as measured after a cool-down period of fixed duration. A greater reduction in heart rate after exercise during the reference period is associated with a higher level of cardiac fitness. Heart rates that do not drop by more than 12 bpm one minute after stopping exercise are associated with an increased risk of death. Investigators of the Lipid Research Clinics Prevalence Study, which included 5,000 subjects, found that patients with an abnormal HRrecovery had a mortality rate 2.5 times greater than patients with a normal recovery. Another study by Nishime et al. And featuring 9,454 patients followed for a median period of 5.2 years found a four-fold increase in mortality in subjects with an abnormal HRrecovery. Shetler et al. Studied 2,193 patients for thirteen years and found that a HRrecovery of ≤22 bpm after one minute "best identified high-risk patients".

They also found that while HRrecovery had significant prognostic value it had no diagnostic value. Training regimes sometimes use HRrecovery as a guide of progress and to spot problems such as overheating or dehydration. After even short periods of hard exercise it can take a long time for the heart rate to drop to rested levels. Physiology While heart rhythm is regulated entirely by the sinoatrial node under normal conditions, heart rate is regulated by sympathetic and parasympathetic input to the sinoatrial node.

The accelerans nerve provides sympathetic input to the heart by releasing norepinephrine onto the cells of the sinoatrial node, and the vagus nerve provides parasympathetic input to the heart by releasing acetylcholine onto sinoatrial node cells. Therefore, stimulation of the accelerans nerve increases heart rate, while stimulation of the vagus nerve decreases it. Due to individuals having a constant blood volume, one of the physiological ways to deliver more oxygen to an organ is to increase heart rate to permit blood to pass by the organ more often. Normal resting heart rates range from 60–100 bpm. Bradycardia is defined as a resting heart rate below 60 bpm. However, heart rates from 50 to 60 bpm are common among healthy people and do not necessarily require special attention. Tachycardia is defined as a resting heart rate above 100 bpm, though persistent rest rates between 80–100 bpm, mainly if they are present during sleep, may be signs of hyperthyroidism or anemia. Central nervous system stimulants such as substituted amphetamines increase heart rate.

Central nervous system depressants or sedatives decrease the heart rate. There are many ways in which the heart rate speeds up or slows down. Most involve stimulant-like endorphins and hormones being released in the brain, many of which are those that are 'forced'/'enticed' out by the ingestion and processing of drugs.

This section discusses target heart rates for healthy persons and are inappropriately high for most persons with coronary artery disease. For healthy persons, the Target Heart Rate or Training Heart Rate is a desired range of heart rate reached during aerobic exercise which enables one's heart and lungs to receive the most benefit from a workout. This theoretical range varies based mostly on age; however, a person's physical condition, sex, and previous training also are used in the calculation. Below are two ways to calculate one's THR. In each of these methods, there is an element called "intensity" which is expressed as a percentage. The THR can be calculated as a range of 65–85% intensity. However, it is crucial to derive an accurate HRmax to ensure these calculations are meaningful. Example for someone with a HRmax of 180: 65% Intensity:) × 0.65 → 117 bpm 85% Intensity:) × 0.85 → 153 bpm Karvonen method The Karvonen method factors in resting heart rate to calculate target heart rate, using a range of 50–85% intensity: THR = × % intensity) + HRrest Example for someone with a HRmax of 180 and a HRrest of 70: 50% Intensity: × 0.50) + 70 = 125 bpm 85% Intensity: × 0.85) + 70 = 163 bpm Zoladz method An alternative to the Karvonen method is the Zoladz method, which derives exercise zones by subtracting values from HRmax: THR = HRmax − Adjuster ± 5 bpm Zone 1 Adjuster = 50 bpm Zone 2 Adjuster = 40 bpm Zone 3 Adjuster = 30 bpm Zone 4 Adjuster = 20 bpm Zone 5 Adjuster = 10 bpm Example for someone with a HRmax of 180: Zone 1(easy exercise): 180 − 50 ± 5 → 125 − 135 bpm Zone 4(tough exercise): 180 − 20 ± 5 → 155 − 165 bpm Heart rate and cardiovascular mortality risk A number of investigations indicate that faster resting heart rate has emerged as a new risk factor for mortality in homeothermic mammals, particularly cardiovascular mortality in human beings.

Faster heart rate may accompany increased production of inflammation molecules and increased production of reactive oxygen species in cardiovascular system, in addition to increased mechanical stress to the heart. There is a correlation between increased resting rate and cardiovascular risk. This is not seen to be "using an allotment of heart beats" but rather an increased risk to the system from the increased rate. An Australian-led international study of patients with cardiovascular disease has shown that heart beat rate is a key indicator for the risk of heart attack. The study, published in The Lancet studied 11,000 people, across 33 countries, who were being treated for heart problems.

Those patients whose heart rate was above 70 beats per minute had significantly higher incidence of heart attacks, hospital admissions and the need for surgery. University of Sydney professor of cardiology Ben Freedman from Sydney's Concord hospital, said "If you have a high heart rate there was an increase in heart attack, there was about a 46 percent increase in hospitalizations for non-fatal or fatal heart attack." Standard textbooks of physiology and medicine mention that heart rate is readily calculated from the ECG as follows: HR = 1,500/RR interval in millimeters, HR = 60/RR interval in seconds, or HR = 300/number of large squares between successive R waves. In each case, the authors are actually referring to instantaneous HR, which is the number of times the heart would beat if successive RR intervals were constant. However, because the above formula is almost always mentioned, students determine HR this way without looking at the ECG any further. Very low heart rate may be associated with heart block.

It may also arise from autonomous nervous system impairment - this in turn is correlated with criminal tendencies. Abnormalities Tachycardia Tachycardia is a resting heart rate more than 100 beats per minute. This number can vary as smaller people and children have faster heart rates than average adults. Physiological condition when tachycardia occurs are Exercise Pregnancy Emotional conditions such as anxiety or stress. Pathological conditions when tachycardia occurs are: Sepsis Fever Anemia Hypoxia Hyperthyroidism Hypersecretion of catecholamines Cardiomyopathy Valvular heart diseases Acute Radiation Syndrome Bradycardia Bradycardia was defined as a heart rate less than 60 beats per minute when textbooks asserted that the normal range for heart rates was 60 - 100 bpm. The normal range has since been revised in textbooks to 50 - 90 bpm for a human at total rest.

Setting a lower threshold for bradycardia prevents misclassification of fit individuals as having a pathologic heart rate. The normal heart rate number can vary as children and adolescents tend to have faster heart rates than average adults. Bradycardia may be associated with medical conditions such as hypothyroidism.

Trained athletes tend to have slow resting heart rates, and resting bradycardia in athletes should not be considered abnormal if the individual has no symptoms associated with it. For example Miguel Indurain, a Spanish cyclist and five time Tour de France winner, had a resting heart rate of 28 beats per minute, one of the lowest ever recorded in a healthy human. Martin Brady achieved the world record for the slowest heartbeat in a healthy human with a heart rate of just 27 bpm in 2005. Arrhythmia Arrhythmias are abnormalities of the heart rate and rhythm.

They can be divided into two broad categories: fast and slow heart rates. Some cause few or minimal symptoms. Others produce more serious symptoms of lightheadedness, dizziness and fainting. Bibliography References External links Online Heart Beats Per Minute Calculator All8.com's - Beats Per Minute counter Tap computer key along with your heart rate An application for contactless real time heart rate measurements by means of an ordinary web cam.

Abilify (aripiprazole) Side Effects - List of Side Effects, Dangers, What…

Let us go over the side effects of a very commonly prescribed, anti-psychotic drug: Aripiprazole, most commonly known by the brand name Abilify. We’ll be going through the sort of side…

By: PharmacyTrust.com
2015 Best Sinusitis Treatment | 2015 Best Sinusitis Cure | Cure Sinusitis

2015 Best Sinusitis Treatment - 2015 Best Sinusitis Cure - Cure Sinusitis Sinus Contamination additionally called sinusitis is portrayed by the aggravation or swelling of the sinuses.…

By: Best Reviews 2015
Daniel Correa de Sa, MD, Cardiologist and Electrophysiologist - The UVM…

(regal music) - Hello, I'm Daniel Correa de Sa. I'm a Cardiac Electrophysiologist or electrician of the heart. (regal music) Being part of University Hospital is like being…

By: The University of Vermont Medical Center
Heart rate

Heart rate, or heart pulse, is the speed of the heartbeat measured by the number of heartbeats per unit of time -typically beats per minute. The heart rate can vary according to the…

By: Audiopedia
Jugular venous pressure

The jugular venous pressure is the indirectly observed pressure over the venous system via visualization of the internal jugular vein. It can be useful in the differentiation of different…

By: Audiopedia